
www.manaraa.com

Attack Modeling for
Information Security and
Survivability

Andrew P. Moore
Robert J. Ellison
Richard C. Linger

March 2001

Survivable Systems

Unlimited distribution subject to the copyright

Technical Note
CMU/SEI-2001-TN-001

www.manaraa.com

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

www.manaraa.com

CMU/SEI-2001-TN-001 i

Contents

1 Introduction 1
1.1 The Problem 1
1.2 ACME Enterprise 2

2 Attack Trees 4
2.1 Structure and Semantics 4
2.2 ACME Attack Tree 5

3 Attack Pattern Reuse 8
3.1 Attack Patterns 8
3.2 Attack Profiles 11

4 Attack Tree Refinement 13
4.1 Profile/Enterprise Consistency 14
4.2 Pattern Application 15

5 Conclusions 20

www.manaraa.com

ii CMU/SEI-2001TN-001

www.manaraa.com

CMU/SEI-2001-TN-001 iii

List of Figures

Figure 1: ACME, Inc. Enterprise Architecture 3
Figure 2: High-Level Attack Tree for ACME 6
Figure 3: Web Server Attack Refinement 7
Figure 4: Buffer Overflow Attack 10
Figure 5: Unexpected Operator Attack 10
Figure 6: Internet-Based Enclave Attack Reference Model 12
Figure 7: Attack Tree Refinement Process 13
Figure 8: ACME Enterprise Intranet 14
Figure 9: PTN-Based Enclave Attack Reference Model 15
Figure 10: Buffer Overflow Attack Refinement 16
Figure 11: Applying Attack Patterns 17
Figure 12: Unexpected Operator Attack Refinement 19

www.manaraa.com

iv CMU/SEI-2001-TN-001

www.manaraa.com

CMU/SEI-2001-TN-001 v

Abstract

Many engineering disciplines rely on engineering failure data to improve their designs.
Unfortunately, this is not the case with information system engineers, who generally do not
use security failure data—particularly attack data—to improve the security and survivability
of systems that they develop. Part of the reason for this is that, historically, businesses and
governments have been reticent to disclose information about attacks on their systems for
fear of losing public confidence or for fear that other attackers would exploit the same or
similar vulnerabilities. Specific, detailed attack data has just not been available.

However, increased public interest and media coverage of the Internet’s security have
resulted in increased publication of attack data in books, Internet newsgroups, and CERT
security advisories, for example. Engineers can now use this data in a structured way to
improve information system security and survivability.

This technical note describes and illustrates an approach for documenting attack information
in a structured and reusable form. We expect that security analysts can use this approach to
document and identify commonly occurring attack patterns, and that information system
designers and analysts can use these patterns to develop more survivable information
systems.

www.manaraa.com

vi CMU/SEI-2001-TN-001

www.manaraa.com

CMU/SEI-2001-TN-001 1

1 Introduction

Engineers have long relied on the analysis of engineering failures to improve their designs.
Imagine what would result if bridge builders had ignored the lessons learned from the
torsional oscillations that caused the Tacoma Narrows Bridge to collapse. Or if shipbuilders
had ignored the lessons learned about inadequate lifeboat space that allowed the great loss of
life when the Titanic sank. Engineering success requires that we also learn from less famous
disasters. The aerospace community, for example, has institutionalized a means for learning
from air traffic accidents that has resulted in very low risk of death during air travel, despite
its inherent hazards.

1.1 The Problem
Information system engineers generally do not use security failure data—particularly attack
data—to improve their designs and implementations. This is partly because of a lack of
publicly available data [Anderson 93]. Businesses and governments are reticent to draw
attention to attacks on their systems for fear that other attackers will exploit the same or
similar vulnerabilities. Even after their systems are strengthened to block attacks,
organizations resist divulging the attack for fear of losing public confidence.

Despite organizational reticence to disclose attacks on their systems, attack data have become
more available over the past decade, primarily because of increased public interest and media
coverage of Internet security. Organizations such as the Software Engineering Institute’s
CERT Coordination Center were formed primarily to help protect business and government
information systems from Internet-based security attacks, in part by publishing security
advisories that did not disclose the names of the organizations involved. Many books on the
subject of how hackers break into systems have been published [Klander 97, Scambray 01].
Nevertheless, recent research shows that information system engineers are not learning from
these documented security attacks [Arbaugh 00]. Information systems being built and
managed today are prone to the same or similar vulnerabilities that have plagued them for
years.

Information system engineers need a better way to use and analyze attack data to learn from
previous experience. This paper proposes a means to document information-security attacks
in a structured and reusable form. We expect that security analysts will be able to use the
structures described to identify commonly occurring attack patterns derived from real attack
data.1 Further, we expect that information system designers and analysts will be able to use

 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office.
1 These structures are not intended for use by victims of an attack, but by analysts who more fully

understand attacker profiles and the impact of specific attacks on system operation.

www.manaraa.com

2 CMU/SEI-2001-TN-001

the attack patterns to develop more survivable systems. Future work will refine and validate
the approach through its application to real-world examples.

We base our documentation approach on a structure called the attack tree [Schneier 99].
Section 2 describes the attack tree format and semantics. Section 3 describes a structure for
capturing and reusing generic patterns of information-security attacks. Section 4 defines a
model for refining attack trees that is based on the specification and reuse of these generic
attack patterns. Section 5 summarizes this paper and characterizes future work.

1.2 ACME Enterprise
Throughout the paper we use attacks on a fictitious company, called ACME, Inc., to illustrate
concepts and issues. Figure 1 depicts the ACME enterprise environment and architecture.
The important features to notice are that ACME’s property is physically protected by a fence
around the perimeter. The only entrance to the property is through the fenced perimeter. In
addition to the perimeter fence, physical security consists of a guarded front gate. The local
networks are split between the Headquarters’ LAN and the Network Services’ LAN. Internet
users connect to the ACME Web server through a firewall. Dial-up users get access to a
particular server on the Network Services’ LAN.

www.manaraa.com

CMU/SEI-2001-TN-001 3

Figure 1: ACME, Inc. Enterprise Architecture

Parking

Front
Gate

Dumpster

Fenced
Perimeter

Network Services

ACME
Firewall

ACME
Web Server

Remote
Dial-Up

Users

Internet
Users

Backbone

Guard

ACME HQ

www.manaraa.com

4 CMU/SEI-2001-TN-001

2 Attack Trees

Attack trees have existed in various forms, and under various names, for many years, but
have been most recently described as a systematic method to characterize system security
based on varying attacks [Schneier 00]. They refine information about attacks by identifying
the compromise of enterprise security or survivability as the root of the tree. The ways that an
attacker can cause this compromise iteratively and incrementally are represented as lower
level nodes of the tree. An enterprise typically has a set, or forest, of attack trees that are
relevant to its operation. The root of each tree in a forest represents an event that could
significantly harm the enterprise’s mission. Each attack tree enumerates and elaborates the
ways that an attacker could cause the event to occur. Each path through an attack tree
represents a unique attack on the enterprise.

2.1 Structure and Semantics
We decompose a node of an attack tree either as

• a set of attack sub-goals, all of which must be achieved for the attack to succeed, that are
represented as an AND-decomposition, or

• a set of attack sub-goals, any one of which must be achieved for the attack to succeed,
that are represented as an OR-decomposition.

Attack trees can be represented graphically or textually. We represent an AND-decomposition
as follows:

 Graphical: Textual: Goal G0
 AND G1

 G2

 . . .
 Gn

This represents a goal G0 that can be achieved if the attacker achieves each of G1 through Gn.
We represent an OR-decomposition similarly:

 Graphical: Textual: Goal G0
 OR G1
 G2

 . . .
 Gn

This represents a goal G0 that can be achieved if the attacker achieves any one of G1 through
Gn. Generally we use the textual representation in this paper, since the graphical
representation tends to be awkward for non-trivial attack trees.

 G0

G1 G2 Gn
…

 G0

G1 G2 Gn
…

www.manaraa.com

CMU/SEI-2001-TN-001 5

Attack trees consist of any combination of AND- and OR-decompositions. We generate
individual intrusion scenarios from an attack tree by traversing the tree in a depth-first
manner. For example,

 generates the
 intrusion scenarios

 generates the
 intrusion scenarios

In general, leaf goals are added onto the end of scenarios as they are generated. OR-
decompositions cause new scenarios to be generated. AND-decompositions cause existing
scenarios to be extended. Intermediate nodes of the attack tree do not appear in the intrusion
scenarios because they are elaborated by lower level goals.

Attack trees allow the refinement of attacks to a level of detail chosen by the developer. They
exhibit the property of referential transparency as characterized in Prowell :

“Referential transparency implies that the relevant lower level details of an
entity are abstracted rather than omitted in a particular system of higher level
description, so that the higher level description contains everything needed to
understand the entity when placed in a larger context” [Prowell 99].

This property permits the developer to explore certain attack paths in more depth than others,
while still allowing the developer to generate intrusion scenarios that make sense. In addition,
refining the branches of the attack tree generates new branches, resulting in intrusion
scenarios at the new lower level of abstraction.

2.2 ACME Attack Tree
Figure 2 exemplifies a high-level attack tree where the root node compromise to ACME
security is the disclosure of proprietary secrets. Notice that we include physical and social
engineering attacks as well as technological attacks. The first branch of the top-level OR-

G5

G1 G2

G0

G3 G4 G6

〈 G3 ,G5 ,G6 〉
〈 G4 ,G5 ,G6 〉

〈 G4 ,G5 〉
〈 G2 〉
〈 G6 〉
〈 G8 ,G9 〉

G8

G0

G1 G2 G3

G6 G7 G4 G5

G9

www.manaraa.com

6 CMU/SEI-2001-TN-001

decomposition deals with so-called dumpster-diving attacks, both on-site and after refuse has
been removed.

Figure 2: High-Level Attack Tree for ACME

The second branch elaborates attacks that monitor emanations (e.g., visual or
electromagnetic) from locations just outside the perimeter. Branches 3 and 4 cite attacks that
exploit trusted insiders and physical access (either local or remote), respectively. Finally,
branches 5 and 6 characterize technological attacks over the Internet or over the public
telephone network (PTN). Considering attacks that exploit both technical and non-technical
weaknesses of an enterprise’s operation is critical to robust information security and
survivability [Schneier 00, Anderson 93].

Although the intrusion scenarios for the attack tree in Figure 2 are very high level, we will
list them below to illustrate the referential transparency property of attack trees. Recall that
intermediate nodes are not included in an intrusion scenario because they are completely
elaborated by lower level nodes. We use the notation 〈i, j, k〉 to represent the intrusion
scenario leaf goal i, followed by step j, and followed by step k.

• 〈1.1〉 , 〈1.2〉 , 〈2.1, 2.2, 2.3, 2.4〉 , 〈3.1〉 , 〈3.2〉
• 〈4.1〉 , 〈4.2〉 , 〈5.1〉 , 〈5.2〉 , 〈5.3〉 , 〈6.1〉 , 〈6.2〉

Survivability Compromise: Disclosure of ACME proprietary secrets
OR 1. Physically scavenge discarded items from ACME
 OR 1. Inspect dumpster content on-site
 2. Inspect refuse after removal from site
 2. Monitor emanations from ACME machines
 AND 1. Survey physical perimeter to determine optimal monitoring position
 2. Acquire necessary monitoring equipment
 3. Setup monitoring site
 4. Monitor emanations from site
 3. Recruit help of trusted ACME insider
 OR 1. Plant spy as trusted insider
 2. Use existing trusted insider
 4. Physically access ACME networks or machines
 OR 1. Get physical, on-site access to Intranet
 2. Get physical access to external machines
 5. Attack ACME intranet using its connections with Internet
 OR 1. Monitor communications over Internet for leakage
 2. Get trusted process to send sensitive information to attacker over Internet
 3. Gain privileged access to Web server
 6. Attack ACME intranet using its connections with public telephone network (PTN)
 OR 1. Monitor communications over PTN for leakage of sensitive information
 2. Gain privileged access to machines on intranet connected via Internet

www.manaraa.com

CMU/SEI-2001-TN-001 7

Most of these scenarios are of length 1 because they are not part of an AND-decomposition.
The sole exception is the AND-decomposition under the second branch of Figure 2.

Now suppose, for example, that we need to know more about attacks over the Internet on the
ACME Web server (i.e., branch 5.3 of Figure 2). Figure 3 elaborates attacks on the ACME
Web server that have the goal of gaining privileged access.

The scenarios for this sub-tree that lead to access to sensitive shared intranet resources
directly (i.e., 5.3.5.1) are as follows (note: we omit the 5.3. prefix from each leaf label for
compactness):

• 〈1, 2.1, 3.1, 4.1, 5.1〉 , 〈1, 2.2, 3.1, 4.1, 5.1〉 , 〈1, 2.3, 3.1, 4.1, 5.1〉
• 〈1, 2.1, 3.2, 4.1, 5.1〉 , 〈1, 2.2, 3.2, 4.1, 5.1〉 , 〈1, 2.3, 3.2, 4.1, 5.1〉
• 〈1, 2.1, 3.1, 4.2, 5.1〉 , 〈1, 2.2, 3.1, 4.2, 5.1〉 , 〈1, 2.3, 3.1, 4.2, 5.1〉
• 〈1, 2.1, 3.2, 4.2, 5.1〉 , 〈1, 2.2, 3.2, 4.2, 5.1〉 , 〈1, 2.3, 3.2, 4.2, 5.1〉

The set of scenarios for gaining access to sensitive data from a protected account on the Web
server (5.3.5.2) is identical to the above set with 5.2 substituted for 5.1. These 24 scenarios
would replace the scenario 〈5.3〉 in the original list of intrusion scenarios for the attack tree in
Figure 2. This expanded list represents the intrusion scenarios for the refined attack tree.

Figure 3: Web Server Attack Refinement

5.3. Gain privileged access to ACME Web server
 AND 1. Identify ACME domain name

2. Identify ACME firewall IP address
 OR 1. Interrogate domain name server
 2. Scan for firewall identification
 3. Trace route through firewall to Web server

3. Determine ACME firewall access control
 OR 1. Search for specific default listening ports
 2. Scan ports broadly for any listening port

4. Identify ACME Web server operating system and type
 OR 1. Scan OS services’ banners for OS identification
 2. Probe TCP/IP stack for OS characteristic information

5. Exploit ACME Web server vulnerabilities
 OR 1. Access sensitive shared intranet resources directly
 2. Access sensitive data from privileged account on Web server

www.manaraa.com

8 CMU/SEI-2001-TN-001

3 Attack Pattern Reuse

The practicality of attack trees to characterize attacks on real-world systems depends on
being able to reuse previously developed patterns of attack. This section describes two
structures that support such reuse: an attack pattern for characterizing an individual type of
attack, and an attack profile for organizing attack patterns to make it easier to search for and
apply them.

3.1 Attack Patterns
We define an attack pattern as a generic representation of a deliberate, malicious attack that
commonly occurs in specific contexts. Each attack pattern contains

• the overall goal of the attack specified by the pattern
• a list of preconditions for its use
• the steps for carrying out the attack
• a list of postconditions that are true if the attack is successful

The preconditions include assumptions that we make about the attacker or the state of the
enterprise that are necessary for an attack to succeed. Example preconditions include the
skills, resources, access, or knowledge that the attacker must possess, and the level of risk
that he or she must be willing to tolerate. The postconditions include knowledge gained by
the attacker and changes to the enterprise state that result from successfully carrying out the
attack steps when the preconditions hold. Over the past decade, the most common form of
security vulnerability has been the incorrect handling of buffer overflows by computer
programs [Cowan 00]. As shown in Figure 4, when a program is invoked an activation record
is added to the system’s execution stack. Each activation record contains the return address
when the program terminates and any local variables and buffers. In certain programs,
excessively long user input can cause the internal buffer to overflow. As shown, the buffer
overflow can overwrite the local variables, return pointer, and other portions of adjacent
memory. An attacker can, therefore, construct the user input to change the return pointer to
return to malicious code of the attacker’s choosing. This malicious code runs on return with
the privilege of the original program. If the program runs with administrator privilege, which
is often the case, the attacker essentially has complete control of the system. This pattern of
attack is captured as follows:

www.manaraa.com

CMU/SEI-2001-TN-001 9

 Buffer Overflow Attack Pattern:
 Goal: Exploit buffer overflow vulnerability to perform malicious function on

target system
 Precondition: Attacker can execute certain programs on target system
 Attack:
 AND 1. Identify executable program on target system susceptible to buffer

overflow vulnerability
 2. Identify code that will perform malicious function when it executes with

program’s privilege
 3. Construct input value that will force code to be in program’s address

space
 4. Execute program in a way that makes it jump to address at which code

resides
 Postcondition: Target system performs malicious function

The Buffer Overflow Attack demonstrates one way for an attacker to exploit with malicious
intent a program’s trust in user input. This is an example of a more general class of attacks
called Input Validation Attacks: if the program would have validated user input, perhaps
truncating it appropriately, the program would not be vulnerable to the attack. Another
example in this class is the Unexpected Operator Attack. Rather than being vulnerable to
excessively long input values, programs susceptible to the unexpected operator vulnerability
simply do not expect that certain operators will be included in the input. For example, the
program p in Figure 5 expects that a file name will be passed as input so that the program can
use the data contained in the file for some purpose. The program vulnerability is exploited
when an attacker appends the input file name with a command composition operator (“;” in
this example) and a malicious command (removing all files at the current directory and
below). The pattern associated with this attack is similar in form to the Buffer Overflow
Attack Pattern:

 Unexpected Operator Attack Pattern:
 Goal: Exploit unexpected operator vulnerability to perform malicious function
 Precondition: Attacker can execute certain programs on the target system
 Attack:
 AND 1. Identify executable program on the target system susceptible to

unexpected operator vulnerability
 2. Identify (unexpected) operator that permits composing system calls
 3. Identify system call that would perform malicious function when executed

with program’s privilege
 4. Construct unexpected input by composing legal input value with system call

using the unexpected operator
 5. Execute program on the target system with unexpected input
 Postcondition: Target system performs malicious function

www.manaraa.com

10 CMU/SEI-2001-TN-001

Figure 4: Buffer Overflow Attack

Figure 5: Unexpected Operator Attack

Attack patterns can exist at a variety of levels and do not necessarily lead to a direct
compromise of information or denial of service. They may simply provide the attacker with
information that he or she needs to achieve a goal. For instance, finding out the access
controls that are enforced by a firewall is essential to determining how to take control of
machines behind that firewall:

 Access Control Discovery Attack Pattern:
 Goal: Identify firewall access controls
 Precondition: Attacker knows firewall IP address
 Attack:
 OR 1. Search for specific default listening ports
 2. Scan ports broadly for any listening ports
 3. Scan ports stealthily for listening ports
 OR 1. Randomize target of scan
 2. Randomize source of scan
 3. Scan without touching target host
 Postcondition: Attacker knows firewall access controls

Other patterns may help to satisfy the preconditions of patterns already specified. The
following pattern helps to satisfy the precondition of the last pattern:

program
code

...
return
pointer

local
variables

buffer
...

program
invocation

execution
stack
growth

activation
record

overflow
program
buffer
with

malicious
input buffer

growth

malicious
code

...
modified
pointer

overwritten
values

buffer
...

program p (fname : string) =
 …
 cmd = append (‘‘Open ’’,
fname)
 execute (cmd)
 ...

expected call: p(“data.txt”)

malicious call: p(“data.txt ; rm -rf *”)

www.manaraa.com

CMU/SEI-2001-TN-001 11

 IP Address Discovery Attack Pattern:
 Goal: Identify target’s firewall IP address
 Precondition: Attacker knows target’s domain name
 Attack:
 OR 1. Interrogate Domain Name Server
 2. Trace route through firewall to target’s Web server
 3. Scan for firewall IP address
 Postcondition: Attacker knows target’s firewall IP address

3.2 Attack Profiles
We further organize related attack patterns into an encompassing attack profile . Attack
profiles contain

• a common reference model
• a set of variants
• a set of attack patterns
• a glossary of defined terms and phrases

The reference model represents an architecture template with parameters that may include
specific variants. The attack patterns are also defined in terms of the variants. As we will
describe more fully in the next section, attack profiles are specified independently of any
particular enterprise. An enterprise whose architecture is consistent with a profile’s reference
model may use the profile’s attack patterns, once instantiated, to help construct attack trees
relevant to the enterprise’s operation. Different attack profiles may address different levels of
attacker access, resources, and skills, as well as different configurations of system
components. Therefore, different attack profiles may help refine an enterprise-specific attack
tree along different lines of attack.

Figure 6 depicts a reference model for the Internet-Based Enclave Attack Profile. The
variants of this reference model are the italicized terms shown in the figure: User, System,
Intranet, Firewall, and Attacker. That is, these elements may vary depending on the details of
the specific enterprise. Attack patterns are also specified in terms of these, and potentially
other, variants. The Buffer Overflow Attack Pattern is a member of this profile and can be
restated in terms of the variants as follows:

www.manaraa.com

12 CMU/SEI-2001-TN-001

 Buffer Overflow Attack Pattern:
 Goal: Exploit buffer overflow vulnerability to perform malicious function on

System
 Precondition: Attacker can execute certain programs on System
 Attack:
 AND 1. Identify executable program on System susceptible to buffer overflow

vulnerability
 2. Identify code that will perform malicious function when it executes with

program’s privilege
 3. Construct input value that will force code to be in program’s address

space
 4. Execute program in way that makes it jump to address at which code

resides
 Postcondition: System performs malicious function

Notice that the profile variants system and attacker appear in the example above. Another
variant, malicious function, does not occur as a variant of the profile’s reference model. The
underlined phrase is defined in the profile’s glossary:

Buffer overflow vulnerability: A flaw in a program that, when executed with
excessively long input values, causes an internal buffer to overflow
overwriting portions of the execution stack and adjacent memory.

Figure 6: Internet-Based Enclave Attack Reference Model

Intranet

System

F
i
r
e
w
a
l
l

 Internet

Attacker

User

The Org Enclave

www.manaraa.com

CMU/SEI-2001-TN-001 13

4 Attack Tree Refinement

As shown in the flow chart of Figure 7, an attack tree can be refined from the root node
compromise as a combination of manual extensions and pattern applications. Manual
extensions depend greatly on the security expertise of the person developing the attack tree.
Pattern application also depends on such expertise, but to a lesser extent. Some of this
security expertise is built into an attack pattern library. Henceforth, we assume such a library
already exists.

Figure 7: Attack Tree Refinement Process

A good attack pattern library provides a set of attack profiles that are rich enough to
characterize the attacks that may take place on a broad range of enterprise architectures.
Refining a particular enterprise’s attack tree involves first finding those attack profiles that
are consistent with the enterprise architecture. The developer searches the attack patterns of
consistent attack profiles for a refinement of an attack path contained in the enterprise attack
tree. Once found, the developer can appropriately instantiate and apply the attack pattern to

Compromise
to enterprise

mission

yes no

no

no

no

yes

yes

yes

Extend

attack tree
manually

Done?
Find

attack profile
of interest

Consistent?

Keep
searching?

Find
attack pattern

of interest

Instantiate
and apply

pattern

 Applicable?

Use attack tree
to design and

analyze system
survivability

www.manaraa.com

14 CMU/SEI-2001-TN-001

extend the enterprise attack tree. This process of pattern application intermixed with manual
extension continues until the attack tree is sufficiently refined.

The rest of this section discusses in greater detail what it means for an attack profile to be
consistent with an enterprise architecture, what it means for an attack pattern to be applicable
to an enterprise attack tree, and how to instantiate and apply an attack pattern to refine the
enterprise attack tree. The decision of when to halt the process is at the discretion of the
developer.

4.1 Profile/Enterprise Consistency
As we mentioned previously, the reference model associated with an attack profile can be
viewed as an architecture template. The parameters of this template are the reference model
variants. If a set of values exists for these variants that unifies the attack profile’s reference
model with some portion of the enterprise architecture, we say that the attack profile is
consistent with the enterprise architecture. The attack patterns associated with the profile are
written with respect to the profile’s reference model and in terms of the profile’s variants.
These attack patterns are, therefore, relevant to the enterprise architecture.

As a specific example of an attack profile’s consistency with an enterprise architecture, look
at the Network-Based Enclave Attack Profile that we described previously. The reference
model for this profile, illustrated in Figure 6, is consistent with the ACME enterprise
architecture, shown Figure 1. This can be seen by instantiating the profile’s variants as
follows: Org as ACME, Intranet as ACME Intranet, and Firewall as ACME Firewall.
Although the ACME Intranet was not explicitly labeled as such in Figure 1, it can be
characterized as shown in Figure 8. The remaining variants associated with the reference
model remain abstract, representing simply arbitrary Users, Attackers, and Systems to be
instantiated at a later stage of refinement.

Figure 8: ACME Enterprise Intranet
Of course, other attack profiles could be used to refine the ACME attack tree, such as the
PTN-Based Enclave Attack Profile. This profile contains patterns of attack over the public

ACME
Firewall

ACME
Web Server

Internet
Users

HQ LAN

Backbone

ACME Intranet

www.manaraa.com

CMU/SEI-2001-TN-001 15

telephone network through dial-up modems. The reference model for this profile, shown in
Figure 9, is vulnerable to the Scan-Dialing Attack:

 Scan-Dialing Attack Pattern:
 Goal: Remotely login to System
 Precondition: 1. Attacker knows Org telephone exchange
 2. Attacker knows user name of User on System
 Attack:
 AND 1. Scan-dial Org telephone exchange for answering modems
 2. Determine that connection is through Modem to System
 2. Crack User’s password on System
 3. Login as User on System
 Postcondition: Attacker has access to User’s account on System

Figure 9: PTN-Based Enclave Attack Reference Model

4.2 Pattern Application
Determining which attack profiles are consistent with the enterprise architecture is only the
first step. Analysts must also determine which attack patterns in consistent profiles help
refine the enterprise attack tree. This requires identifying a pattern whose goal helps to
achieve the goal identified at an attack tree node. We say that such patterns, when properly
instantiated, are applicable to the enterprise attack tree.

For example, suppose we want to use the Buffer Overflow Attack Pattern, defined previously,
to refine the ACME attack tree in Figure 3. We notice that an attacker could achieve goal
5.3.5.2 (i.e., Access sensitive data from privileged account on ACME Web server) by getting
access to such a privileged account and then scanning for files that contain sensitive data.
Furthermore, the attacker could achieve the first of these subgoals by exploiting a buffer
overflow vulnerability on the ACME Web server. But this looks similar to the goal of the
Buffer Overflow Attack Pattern.

We can use the Buffer Overflow Attack Pattern if we instantiate it so that the System under
attack is the ACME Web server and the malicious function that is executed provides the
attacker with access to a privileged account:

Intranet

System

Attacker
User

The Org Enclave

M
o
d
e
m

Public
Telephone

Network (PTN)

www.manaraa.com

16 CMU/SEI-2001-TN-001

 Buffer Overflow Attack Pattern: (instantiated)
 Goal: Exploit buffer overflow vulnerability to get access to privileged account

on ACME Web Server
 Precondition: Attacker can execute certain programs on ACME Web Server
 Attack:
 AND 1. Identify executable program on ACME Web Server susceptible to

buffer overflow vulnerability
 2. Identify code that would provide access to privileged account when executed

with program’s privilege
 3. Construct input value that will force code to be in program’s address

space
 4. Execute program in way that makes it jump to address at which code

resides
 Postcondition: Attacker can access privileged account

We do not require a rote substitute of the instantiations, but rather allow rewording to sound
natural as long as it preserves the pattern’s original intent. Figure 10 shows a refined portion
of the attack tree as a result of applying the above attack pattern. Thus, we can refine the
ACME attack tree in a way that permits the use of the pattern. This directed refinement of
enterprise attack trees to apply a specific attack pattern is a common way to enable reuse.

Figure 10: Buffer Overflow Attack Refinement

Figure 11 illustrates the three distinct types of pattern application. Each row shows the attack
tree that results from applying an attack pattern, with a generic instantiation, to a particular
type of node of an enterprise attack tree. Attack trees and patterns with no AND- or OR-
decomposition signifier can be either an AND- or an OR- decomposition. For example, the
application of an attack pattern to the leaf node of an enterprise attack tree, shown in the first
row of Figure 11, does not depend on whether that node or pattern are AND- or OR-
decomposed. It does depend, however, on an instantiation of the pattern that achieves the leaf
node to be refined. We represent the instantiation of an attack pattern as the instantiation of
each goal of the pattern, which is denoted abstractly as an “i” followed by the goal node
instantiated. Thus, for leaf node application, the instantiation of the goal of the pattern (iGR)
must achieve the leaf node to be refined (GK+i). The refinement of the ACME attack tree

5.3.5.2 Access sensitive data from privileged account on ACME Web Server
 AND 1. Get access to privileged account on ACME Web server
 AND 1. Identify executable program on ACME Web server

susceptible to buffer overflow vulnerability
 2. Identify code that would provide access to privileged

account when executed with program’s privilege
 3. Construct input value that will force code to be in

program’s address space
 4. Execute program in a way that makes it jump to address

at which code resides
 2. Scan files for sensitive data

www.manaraa.com

CMU/SEI-2001-TN-001 17

using the Buffer Overflow Attack Pattern, shown in Figure 10, exemplifies a leaf node
pattern application.

Figure 11: Applying Attack Patterns

The non-leaf node applications, shown in the second and third rows of Figure 11, depend on
whether the node is OR-decomposed or AND-decomposed. Applying an attack pattern at an
OR-decomposed node, as in the second row, simply results in another OR-branch added to
the attack tree at that node. This OR-branch represents another path for the attacker to
achieve the goal GJ by means of the instantiated attack pattern. Applying a pattern at an
AND-decomposed node, as in the third row, results in an attack tree with two alternative
paths for the attack to achieve GJ, one by means of the original attack and one by means of
the instantiated attack pattern. In this case, the user must differentiate the original attack from
the new attack pattern. The differentiated goal is represented abstractly as dGJ.

To illustrate applying an attack pattern to an intermediate node of an attack tree, one would
instantiate the Unexpected Operator Attack Pattern described in Section 3.1, as we did for the
Buffer Overflow Attack Pattern. The resulting pattern, where the System under attack is the
ACME Web server and the malicious function that is executed provides the attacker with
access to a privileged account, is as follows:

GJ

GK GK+n GK+i

iGS iGS+m
...

GJ

GK GK+n GK+i
... ...

GR

GS GS+m ...
+ =

Leaf Node
Application + iGR achieves GK+i

GJ

GK GK+n
...

GJ

GK GK+n
...

GR

GS GS+m
... + =

Non-Leaf Node
Application to
OR-Decomp

+ iGR achieves GJ

Enterprise
Attack Tree

Attack
Pattern

Instantiation (i)
Differentiation (d)

Resulting
Attack Tree

iGR

iGS iGS+m

...

GJ
GJ

GK GK+n
...

GR

GS GS+m
... + =

Non-Leaf Node
Application to
AND-Decomp + iGR achieves GJ

dGJ achieves GJ iGR

iGS+m
...

dG
J

GK GK+n

...

......

iGS

www.manaraa.com

18 CMU/SEI-2001-TN-001

 Unexpected Operator Attack Pattern: (instantiated)
 Goal: Exploit unexpected operator vulnerability to perform access privileged account
 Precondition: Attacker can execute certain programs on ACME Web server
 Attack:
 AND 1. Identify executable program on ACME Web Server susceptible to

unexpected operator vulnerability
 2. Identify (unexpected) operator that permits composing system calls
 3. Identify system call that would provide access to privileged account when

executed with program’s privilege
 4. Construct unexpected input by composing legal input value with system call

using the unexpected operator
 5. Execute program on ACME Web server with unexpected input

 Postcondition: Attacker can access privileged account

Figure 12 shows the attack tree of Figure 10 refined to apply this pattern at node 5.3.5.2.1.
The third row in Figure 11 represents this type of attack pattern application. Notice that we
use the goal of the Buffer Overflow Attack Pattern as the differentiated goal.

www.manaraa.com

CMU/SEI-2001-TN-001 19

Figure 12: Unexpected Operator Attack Refinement

5.3.5.2 Access sensitive data from privileged account on ACME Web server
AND 1. Get access to privileged account on ACME Web server
 OR 1. Exploit buffer overflow vulnerability to access privileged account
 AND 1. Identify executable program on ACME Web server

susceptible to buffer overflow vulnerability
 2. Identify code that would provide access to privileged

account when executed with the program’s privilege
 3. Construct input value that will force code to be in the

program’s address space
4. Execute program in a way that makes it jump to address at

which code resides
 2. Exploit unexpected operator vulnerability to access privileged

account
AND 1. Identify executable program on ACME Web server

susceptible to unexpected operator vulnerability
2. Identify (unexpected) operator that permits composing

system calls
3. Identify system call that would provide access to

privileged account when executed with program’s
privilege

4. Construct unexpected input by composing legal input value with
system call using the unexpected operator

5. Execute program on ACME Web server with unexpected input
 2. Scan files for sensitive data

www.manaraa.com

20 CMU/SEI-2001-TN-001

5 Conclusions

The objective of this technical note is to describe a means for documenting information-
security attacks in a structured and reusable form. Within this scope, we show how to
document possible attacks on an enterprise in the form of attack trees. Each attack tree
enumerates and elaborates the ways that an attacker can compromise the enterprise’s ability
to accomplish its mission. We describe how to document and organize generic patterns of
attack and how to reuse these to facilitate attack tree construction. The many examples
provided illustrate the structures and techniques employed.

This paper probably raises more questions than it answers. For example:

• How does one derive requirements and improve system designs from known attacks?
• What types of analysis can one perform on attack trees?
• To what level of detail should one refine attack trees?
• At what level(s) of detail should one characterize attack patterns?
• Is there a more structured language for attack patterns that would facilitate their

combination and analysis?
• How does one deal with the volatility of actual vulnerability discovery and system

patching?
• How does one prioritize the branches of an attack tree according to likelihood and

impact?
• How does one determine an attacker’s ability and motivation for executing particular

attacks?

These are a few of the questions that are driving future research. The overall goal of this
research is to develop methods to derive requirements and designs for enterprise systems and
operations that better survive active and malicious attacks. We believe that incorporating
lessons learned from previous attacks is an important aspect of this research and that the
attack tree is a useful structure to organize historical attack data. As work progresses, we will
strive to

• refine the approach to facilitate more systematic analysis
• validate the practicality and scalability of the approach
• develop a broad range of attack profiles to support reuse
• formalize the model of attack tree refinement and analysis
• determine the proper role of automation to support the approach

www.manaraa.com

CMU/SEI-2001-TN-001 21

References

Anderson 93 Anderson, R., “Why Cryptosystems Fail,” in Proc. 1st Conf.
On Computer and Communications Security, 1993.

Arbaugh 00 Arbaugh, W.A., W.L. Fithen, and J. McHugh, “Windows of
Vulnerability: A Case Study Analysis,” IEEE Computer,
Vol. 33, No. 12, Dec. 2000.

Cowan 00 Cowan, C., P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade,” DARPA Information
Survivability Conference and Expo (DISCEX), 2000.

Klander 97 Klander, L., E.J. Renehan, Jr., “Hacker Proof: The Ultimate
Guide to Network Security,” Delmar Publishers, 1997.

Prowell 99 Prowell, S.J., C.J. Trammell, R.C. Linger, and J.H. Poore,
Cleanroom Software Engineering: Technology and Process,
Addison Wesley Longman, Inc., 1999.

Prowell 99 Prowell, S.J., C.J. Trammell, R.C. Linger, and J.H. Poore,
Cleanroom Software Engineering: Technology and Process,
Addison Wesley Longman, Inc., 1999.

Salter 98 Salter, C., O. Saydjari, B. Schneier, J. Walner, “Toward a
Secure System Engineering Methodology,” Proc. Of New
Security Paradigms Workshop, September 1998.

Scambray 01 Scambray, J., S. McClure, G. Kurtz, Hacking Exposed:
Network Security Secrets & Solutions (Second Edition),
McGraw-Hill, 2001.

Schneier 99 Schneier, B., “Attack Trees: Modeling Security Threats,” Dr.
Dobb’s Journal, December 1999.

Schneier 00 Schneier, B., Secrets and Lies: Digital Security in a
Networked World, John Wiley & Sons, August 2000.

www.manaraa.com

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

March 2001
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Attack Modeling for Information Security and Survivability
5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Andrew P. Moore, Robert J. Ellison, Richard C. Linger
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TN-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Many engineering disciplines rely on engineering failure data to improve their designs. Unfortunately, this is not the
case with information system engineers, who generally do not use security failure data—particularly attack data—to
improve the security and survivability of systems that they develop. Part of the reason for this is that, historically,
businesses and governments have been reticent to disclose information about attacks on their systems for fear of losing
public confidence or for fear that other attackers would exploit the same or similar vulnerabilities. Specific, detailed
attack data has just not been available.

However, increased public interest and media coverage of the Internet’s security have resulted in increased publication
of attack data in books, Internet newsgroups, and CERT security advisories, for example. Engineers can now use this
data in a structured way to improve information system security and survivability.

This technical note describes and illustrates an approach for documenting attack information in a structured and
reusable form. We expect that security analysts can use this approach to document and identify commonly occurring
attack patterns, and that information system designers and analysts can use these patterns to develop more survivable
information systems.

14. SUBJECT TERMS

survivability of systems, survivability attacks, Internet security, attack patterns,
information system design

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Attack Trees
	3 Attack Pattern Reuse
	4 Attack Tree Refinement
	5 Conclusions
	References

